Two chemistries on a single lab-on-chip: Nitrate and orthophosphate sensing underwater with inlaid microfluidics

Author:

Luy Edward,Smith James,Grundke Iain,Sonnichsen Colin,Furlong Arnold,Sieben Vincent

Abstract

Autonomous in situ sensors are required to monitor high-frequency nutrient fluctuations in marine environments on a mass-scale. We present a submersible, dual-chemistry sensor that performs multiple colourimetric assays simultaneously on a fluid sample for multi-parameter in situ analysis. Based on a highly configurable architecture that has been successfully deployed for several multi-month periods, the sensor utilizes 10 solenoid valves, 4 syringes, 3 stepper motors, 2 LEDs, 4 photodiodes, and “inlaid” microfluidics to permit optical measurements of microliter fluid volumes. Fluid pathways are machined into a modular two-layer microfluidic lab-on-chip (LOC) fabricated from poly (methyl methacrylate) (PMMA) with two parallel inlaid optical cells of 10.4 mm and 25.4 mm path lengths (1.7 µl and 4 μl, respectively). Different LOC designs can be used to implement a wide variety of colorimetric assays. We demonstrate application of our dual-chemistry sensor towards simultaneous measurement of nitrate and dissolved orthophosphate: two nutrients fundamental to primary production. The performance of the dual-species nitrate and phosphate “NP Sensor” is characterized first in a controlled laboratory environment. Combined nutrient standards containing nitrate and phosphate concentrations ranging from 2.5 µM–100 µM NO3 and 0.25 µM–10 µM PO43 were analyzed, reporting detection limits of 97 nM NO3 and 15 nM PO43. Calibrations were repeated under 3 fixed temperature conditions, T = 5°C, 10°C, 15°C, to determine the temperature-dependent sensitivity relations for both species needed to calculate concentrations during field deployments. Finally, an 8-day field deployment in Fish Hatchery Park, NS, Canada followed, acquiring a total of 592 nitrate and dissolved orthophosphate measurements. An on-board combined nutrient standard was measured periodically to assess the in situ accuracy of the sensor, with an average relative uncertainty of 15% across the deployment. Measured nitrate and dissolved orthophosphate levels in the river reached as high as 10 µM and 3.6 µM, respectively. Fast Fourier transform analysis suggests a strong out-of-phase relationship between measured phosphate and water level, with a shared frequency peak in both data agreeing within a 3.2% difference. This trend is due to conventional mixing at the river mouth to neighboring Bedford Basin. A spike in the measured nitrate to phosphate (N:P) ratio was also observed, synchronized to a precipitation event and indicative of runoff. The novel sensor will enable high-frequency dual-nutrient monitoring in many aquatic environments.

Publisher

Frontiers Media SA

Subject

General Medicine,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3