Fault-Aware Adversary Attack Analyses and Enhancement for RRAM-Based Neuromorphic Accelerator

Author:

Shang Liuting,Jung Sungyong,Li Fengjun,Pan Chenyun

Abstract

Neural networks have been widely deployed in sensor networks and IoT systems due to the advance in lightweight design and edge computing as well as emerging energy-efficient neuromorphic accelerators. However, adversary attack has raised a major threat against neural networks, which can be further enhanced by leveraging the natural hard faults in the neuromorphic accelerator that is based on resistive random access memory (RRAM). In this paper, we perform a comprehensive fault-aware attack analysis method for RRAM-based accelerators by considering five attack models based on a wide range of device- and circuit-level nonideal properties. The research on nonideal properties takes into account detailed hardware situations and provides a more accurate perspective on security. Compared to the existing adversary attack strategy that only leverages the natural fault, we propose an initiative attack based on two soft fault injection methods, which do not require a high-precision laboratory environment. In addition, an optimized fault-aware adversary algorithm is also proposed to enhance the attack effectiveness. The simulation results of an MNIST dataset on a classic convolutional neural network have shown that the proposed fault-aware adversary attack models and algorithms achieve a significant improvement in the attacking image classification.

Publisher

Frontiers Media SA

Subject

General Medicine,General Chemistry

Reference57 articles.

1. Realizing Behavior Level Associative Memory Learning through Three-Dimensional Memristor-Based Neuromorphic Circuits;An;IEEE Trans. Emerg. Top. Comput. Intell.,2019

2. AWS Deeplens2022

3. TAPAS: Temperature-Aware Adaptive Placement for 3D Stacked Hybrid Caches;Beigi,2016

4. Rethinking Non-idealities in Memristive Crossbars for Adversarial Robustness in Neural Networks BhattacharjeeA. PandaP. 2020

5. Practical Fault Attack on Deep Neural Networks;Breier,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3