Electronic tongue made of gelatin self-supporting films on printed electrodes to detect lactose

Author:

Piccinin Ana C. V.,Coatrini-Soares Andrey,Franco Giuliana T.,Bondancia Thalita J.,Coatrini-Soares Juliana,Oliveira Osvaldo N.,Mattoso Luiz H. C.

Abstract

An electronic tongue was developed for the detection of lactose content in commercial foods. This was accomplished by employing optimized detection units comprised of gelatin films and information visualization methods for data analysis. The films incorporating gelatin, tannic acid, and zein, served as the basis for the sensors, whose electrodes were screen printed using carbon black ink. Self-supporting films were produced using various combinations of these materials, some of which had limited solubility in water (from 33% to 36%). They were hydrophobic and yielded reproducible electrical impedance spectra to be used as sensing units. Lactose detection experiments were conducted using various standard concentrations and commercial food samples. Capacitance decreased with lactose concentration at low frequencies, with films lacking a hydrophobic coating showing higher capacitance signals (exceeding 200 nF). Low limits of detection were obtained for the most sensitive films, as low as 2.03 × 10−19 mol/L, comparable to existing biosensors to detect lactose. Combining data from four sensing units in an electronic tongue allowed for the differentiation of lactose concentrations ranging from 1 × 10−20 mol/L to 1 × 10−6 mol/L using the interactive document mapping (IDMAP) projection technique, leading to a silhouette coefficient of 0.716. The discriminatory power of the electronic tongue was validated by distinguishing between lactose-containing and lactose-free food products. These findings highlight the potential of electronic tongues made with sustainable materials for applications in food quality assessment and lactose intolerance management.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3