The association between declining lung function and stroke risk: insights from an observational study and Mendelian randomization

Author:

Wang Jiadong,Lin Junjie,Zheng Yujie,Hua Minxia,Wang Kunyi,Lu Kexin,Zhang Yu,Zheng Weijun,Chen Rucheng,Lin Fuquan

Abstract

BackgroundStroke, prevalent globally, particularly impacts low- and middle-income countries. Decreased lung function is one of the risk factors for stroke, and there is a lack of sufficient research on the association between the two, especially based on evidence from representative large samples. We aimed to explore the association between lung function and stroke incidence.MethodsWe collected data from 13,371 participants from the 2007–2012 U.S. national cross-sectional study and 11,192 participants from the Chinese national cohort study during the 2011–2018 follow-up period. Multivariate logistic regression and Cox proportional hazards regression were used to assess cross-sectional and longitudinal associations of peak expiratory flow with stroke risks. Additionally, we used publicly available GWAS data from a European population to conduct Mendelian randomization analysis, further exploring the potential causal relationship.ResultsThe results of the cross-sectional study suggest that a decline in peak expiratory flow may be associated with an increased risk of stroke. The cohort study revealed that, compared to the first tertile group, the risk of stroke incidence in the second and third tertile groups of PEF decreased by 19% (hazard ratio (HR) = 0.810, 95%CI = 0.684–0.960) and 21.4% (HR = 0.786, 95%CI = 0.647–0.956), respectively. Mendelian randomization analysis clarified that higher PEF levels are significantly associated with a reduced risk of stroke (OR = 0.852, 95%CI = 0.727–0.997).ConclusionDecreased lung function is a risk factor for stroke. As a simple and accurate indicator of lung function, PEF can be used to monitor lung function in community populations and patients for primary stroke prevention.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3