Author:
Kwasny Mary J.,Oleske Denise M.,Zamudio Jorge,Diegidio Robert,Höglinger Günter U.
Abstract
Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disorder that is difficult for primary care physicians to recognize due to its progressive nature and similarities to other neurologic disorders. This case-control study aimed to identify clinical features observed in general practice associated with a subsequent diagnosis of PSP.Methods: We analyzed a de-identified dataset of 152 PSP cases and 3,122 matched controls from electronic medical records of general practices in Germany. We used a random forests algorithm based on machine learning techniques to identify clinical features (medical conditions and treatments received) associated with pre-diagnostic PSP without using an a priori hypothesis. We then assessed the relative effects of the features with the highest importance scores and generated multivariate models using clustered logistic regression analyses to identify a subset of clinical features associated with subsequent PSP diagnosis.Results: Using the random forests approach, we identified 21 clinical features associated with pre-diagnostic PSP (odds ratio ≥2.0 in univariate analyses). From these, we constructed a multivariate model comprising 9 clinical features with ~90% likelihood of identifying a subsequent PSP diagnosis. These features included known PSP symptoms, common misdiagnoses, and 2 novel associations, diabetes mellitus and cerebrovascular disease, which are possible modifiable risk factors for PSP.Conclusion: In this case-control study using data from electronic medical records, we identified 9 clinical features, including 2 previously unknown factors, associated with the pre-diagnostic stage of PSP. These may be used to facilitate recognition of PSP and reduce time to referral by primary care physicians.
Subject
Clinical Neurology,Neurology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献