Author:
Li Hao,Fu Xuefeng,Lu Lijun,Guo Hua,Yang Wen,Guo Kaifeng,Huang Zhen
Abstract
BackgroundUpper limb intelligence robots are widely used to improve the upper limb function of patients with stroke, but the treatment mechanism is still not clear. In this study, functional near-infrared spectroscopy (fNIRS) was used to evaluate the concentration changes of oxygenated hemoglobin (oxy-Hb) and deoxyhemoglobin (deoxy-Hb) in different brain regions and functional connectivity (FC) of the cerebral cortex in patients with stroke.MethodTwenty post-stroke patients with upper limb dysfunction were included in the study. They all received three different types of shoulder joint training, namely, active intelligent feedback robot training (ACT), upper limb suspension training (SUS), and passive intelligent feedback robot training (PAS). During the training, activation of the cerebral cortex was detected by fNIRS to obtain the concentration changes of hemoglobin and FC of the cerebral cortex. The fNIRS signals were recorded over eight ROIs: bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM). For easy comparison, we defined the right hemisphere as the ipsilesional hemisphere and flipped the lesional right hemisphere in the Nirspark.ResultCompared with the other two groups, stronger cerebral cortex activation was observed during ACT. One-way repeated measures ANOVA revealed significant differences in mean oxy-Hb changes among conditions in the four ROIs: contralesional PFC [F(2, 48) = 6,798, p < 0.01], ipsilesional M1 [F(2, 48) = 6.733, p < 0.01], ipsilesional S1 [F(2, 48) = 4,392, p < 0.05], and ipsilesional PM [F(2, 48) = 3.658, p < 0.05]. Oxy-Hb responses in the contralesional PFC region were stronger during ACT than during SUS (p < 0.01) and PAS (p < 0.05). Cortical activation in the ipsilesional M1 was significantly greater during ACT than during SUS (p < 0.01) and PAS (p < 0.05). Oxy-Hb responses in the ipsilesional S1 (p < 0.05) and ipsilesional PM (p < 0.05) were significantly higher during ACT than during PAS, and there is no significant difference in mean deoxy-Hb changes among conditions. Compared with SUS, the FC increased during ACT, which was characterized by the enhanced function of the ipsilesional cortex (p < 0.05), and there was no significant difference in FC between the ACT and PAS.ConclusionThe study found that cortical activation during ACT was higher in the contralesional PFC, and ipsilesional M1 than during SUS, and showed tighter cortical FC between the cortices. The activation of the cerebral cortex of ACT was significantly higher than that of PAS, but there was no significant difference in FC. Our research helps to understand the difference in cerebral cortex activation between upper limb intelligent feedback robot rehabilitation and other rehabilitation training and provides an objective basis for the further application of upper limb intelligent feedback robots in the field of stroke rehabilitation.
Funder
Guangzhou Municipal Science and Technology Bureau
Subject
Neurology (clinical),Neurology