Author:
Yan Lingbo,Liu Chenyu,Zhu Xiaoming,Zhou Dayong,Lv Xiaojiang,Kuang Xuyuan
Abstract
Based on the average human body size in China and the THUMS AM50 finite element model of the human body, the Kriging interpolation algorithm was used to model the Chinese 50th percentile human body, and the biological fidelity of the model was verified. We built three different types of passenger vehicle models, namely, sedan, sports utility vehicle (SUV), and multi-purpose vehicle (MPV), and used mechanical response analysis and finite element simulation to compare and analyze the dynamic differences and head injury differences between the Chinese 50th percentile human body and the THUMS AM50 model during passenger vehicle collisions. The results showed that there are obvious differences between the Chinese mannequin and THUMS in terms of collision time, collision position, invasion speed, and angle. When a sedan collided with the mannequins, the skull damage to the Chinese human body model was more severe, and when a sedan or SUV collided, the brain damage to the Chinese human body was more severe. The abovementioned results suggest that the existing C-NCAP pedestrian protection testing regulations may not provide the best protection for Chinese human bodies, and that the regulations need to be improved by combining collision damage mechanisms and the physical characteristics of Chinese pedestrians. This thorough investigation is positioned to shed light on the fundamental biomechanics and injury mechanisms at play. Furthermore, the amalgamation of clinically rooted translational and engineering research in the realm of traumatic brain injury has the potential to establish a solid foundation for discerning preventive methodologies. Ultimately, this endeavor holds the potential to introduce effective strategies aimed at preventing and safeguarding against traumatic brain injuries.
Funder
Natural Science Foundation of China
Central South University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献