Exploring the interaction between T-cell antigen receptor-related genes and MAPT or ACHE using integrated bioinformatics analysis

Author:

Guo Wenbo,Gou Xun,Yu Lei,Zhang Qi,Yang Ping,Pang Minghui,Pang Xinping,Pang Chaoyang,Wei Yanyu,Zhang XiaoYu

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease that primarily occurs in elderly individuals with cognitive impairment. Although extracellular β-amyloid (Aβ) accumulation and tau protein hyperphosphorylation are considered to be leading causes of AD, the molecular mechanism of AD remains unknown. Therefore, in this study, we aimed to explore potential biomarkers of AD. Next-generation sequencing (NGS) datasets, GSE173955 and GSE203206, were collected from the Gene Expression Omnibus (GEO) database. Analysis of differentially expressed genes (DEGs), gene ontology (GO) functional enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein-protein networks were performed to identify genes that are potentially associated with AD. Analysis of the DEG based protein-protein interaction (PPI) network using Cytoscape indicated that neuroinflammation and T-cell antigen receptor (TCR)-associated genes (LCK, ZAP70, and CD44) were the top three hub genes. Next, we validated these three hub genes in the AD database and utilized two machine learning models from different AD datasets (GSE15222) to observe their general relationship with AD. Analysis using the random forest classifier indicated that accuracy (78%) observed using the top three genes as inputs differed only slightly from that (84%) observed using all genes as inputs. Furthermore, another data set, GSE97760, which was analyzed using our novel eigenvalue decomposition method, indicated that the top three hub genes may be involved in tauopathies associated with AD, rather than Aβ pathology. In addition, protein-protein docking simulation revealed that the top hub genes could form stable binding sites with acetylcholinesterase (ACHE). This suggests a potential interaction between hub genes and ACHE, which plays an essential role in the development of anti-AD drug design. Overall, the findings of this study, which systematically analyzed several AD datasets, illustrated that LCK, ZAP70, and CD44 may be used as AD biomarkers. We also established a robust prediction model for classifying patients with AD.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3