De novo STXBP1 Mutations in Two Patients With Developmental Delay With or Without Epileptic Seizures

Author:

Yang Ping,Broadbent Robert,Prasad Chitra,Levin Simon,Goobie Sharan,Knoll Joan H.,Prasad Asuri N.

Abstract

Objectives: Mutations in the STXBP1 gene have been associated with epileptic encephalopathy. Previous studies from in vitro neuroblastoma 2A cells showed that haploinsufficiency of STXBP1 is the mechanism for epileptic encephalopathy. In this ex vivo study, STXPB1 DNA mutations and RNA expression were assessed from two patients to help understand the impact of STXBP1 mutations on the disease etiology and mechanism.Methods: Microarray analysis and DNA sequencing were performed on two children with development delay, one with and one without infantile spasms. Different pathogenic mutations of STXBP1 were identified in the patients and RNA expression of STXPB1 was then performed by RT-Q-PCR on RNA extracted from blood samples of each patient.Results: Pathogenic deletion [of exons 13–20 and 3′ downstream of STXBP1] and nonsense mutation [c.1663G>T (p.Glu555X) in exon 18 of STXBP1] were detected from the two patients, respectively. RNA analysis showed that 1) the deletion mediated RNA decay, and that 2) no RNA decay was identified for the nonsense mutation at codon 555 which predicts a truncated STXBP1 protein.Significance: Our RNA expression analyses from the patient blood samples are the first ex vivo studies to support that both haploinsufficiency and truncation of STXBP1 protein (either dominant negative or haploinsufficiency) are causative mechanisms for epileptic encephalopathies, intellectual disability and developmental delay. The RNA assay also suggests that escape from nonsense-mediated RNA decay is possible when the nonsense mutation resides <50 nucleotides upstream of the last coding exon-exon junction even in the presence of additional non-coding exons that are 3′ downstream of the last coding exon.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3