Shuffling Improves the Acute and Carryover Effect of Subthalamic Coordinated Reset Deep Brain Stimulation

Author:

Wang Jing,Fergus Sinta P.,Johnson Luke A.,Nebeck Shane D.,Zhang Jianyu,Kulkarni Shivaputra,Bokil Hemant,Molnar Gregory F.,Vitek Jerrold L.

Abstract

Coordinated reset deep brain stimulation (CR DBS) in the subthalamic nucleus (STN) has been demonstrated effective for the treatment of the motor signs associated with Parkinson's disease (PD). A critical CR parameter is an order in which stimulation is delivered across contacts. The relative effect of alternating vs. not alternating this order, i.e., shuffling vs. non-shuffling, however, has not been evaluated in vivo. The objective of this study is to compare the effect of shuffled vs. non-shuffled STN CR DBS on Parkinsonian motor signs. Two Parkinsonian non-human primates were implanted with a DBS lead in the STN. The effects of STN CR DBS with and without shuffling were compared with the traditional isochronal DBS (tDBS) using a within-subject design. For each stimulation setting, DBS was delivered for 2 or 4 h/day for 5 consecutive days. The severity of PD was assessed using a modified clinical rating scale immediately before, during, and 1 h after DBS, as well as on days following the discontinuation of the 5 days of daily stimulation, i.e., carryover effect. Shuffled STN CR DBS produced greater acute and carryover improvements on Parkinsonian motor signs compared with non-shuffled CR. Moreover, this difference was more pronounced when more effective stimulation intensity and burst frequency settings were used. tDBS showed limited carryover effects. Given the significant effect of shuffling on the effectiveness of CR DBS, it will be critical for future studies to further define the relative role of different CR parameters for the clinical implementation of this novel stimulation paradigm.

Funder

National Institutes of Health

Boston Scientific Corporation

Parkinson's Foundation

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3