Conduction treatment of temporal lobe epilepsy in rats: the dose-effect relationship between current resistance and therapeutic effect

Author:

Zhang Shaohui,Yuan Liu,Liu Chunxiu,Kuang Suhui,Wang Jiaqi,Liang Shuli,Cong Ming

Abstract

ObjectiveTo investigate the effect of current resistance on therapeutic outcomes, and the mechanism of current conduction treatment in a rat model of temporal lobe epilepsy (TLE).MethodsRats were randomly divided into four groups: normal control, epileptic group, low-resistance conduction (LRC) and high-resistance conduction (HRC) group. The content of glutamate (Glu) and gamma-amino butyric acid (GABA) in the hippocampus was determined using a neurotransmitter analyzer. mRNA and protein expression of interleukin 1β (IL-1β) /IL-1 receptor 1(IL-1R1) and high mobility group protein B1 (HMGB-1)/toll-like receptor-4 (TLR-4) in hippocampal neurons were tested. Video electroencephalogram monitoring was used to record seizures and EEG discharges. Cognitive function in the rats was tested using the Morris water maze.ResultsGlu/GABA ratio in the epileptic control and HRC groups was significant differences from LRC group. The levels of HMGB1/TLR4 and IL-1β/IL-1R1 in the LRC group and normal control group were significantly lower than those in epileptic control group (p < 0.01) and the HRC group. The mRNA levels of HMGB1/TLR4 and IL-1β/IL-1R1 in the LRC group and normal control group were significantly lower than those in epileptic control group. The frequency of total and propagated seizures was lower in the LRC group than in the epileptic control and HRC groups (p < 0.01). The numbers of platform crossings in the LRC group and normal control group were significantly higher than those in the epileptic control and HRC groups in the space exploration experiment.ConclusionCurrent resistance affected seizure control and cognitive protection in rats with TLE treated by current conduction. The lower current resistance, the better seizure control and cognitive protection in rats with TLE treated by current conduction. Glu/GABA, IL-1β/IL-1R1, and HMGB1/TLR-4 may participate in the anti-seizure mechanism of current conduction treatment.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3