Design and analysis of HSC-BPPV diagnostic maneuver based on virtual simulation

Author:

Li Yanjun,Yang Xiaokai

Abstract

BackgroundThe preferred supine roll test for the diagnosis of horizontal semicircular canal BPPV has several disadvantages, including difficulty in locating the affected ear, inconsistent nystagmus performance on repeated testing, and lack of a typical latency period, resulting in insensitive diagnosis.ObjectivesTo investigate novel diagnostic techniques with more scientific design, more accessible application, and better diagnostic sensitivity and specificity.Materials and methodsBased on clinical microscopic CT data, we created a virtual simulation model of BPPV using Unity software. The physical simulation of the traditional supine roll test was performed to observe and analyse the movement of the otoliths, whose initial position was the typical stable position. In addition, the normal vectors of the plane and crista ampullaris of the horizontal semicircular canal were measured using 3D Slicer software. Based on this, we analyzed the critical steps for designing diagnostic maneuvers for BPPV in the horizontal semicircular canal. For a more accurate diagnosis of horizontal semicircular canal BPPV, it is critical to rotate the horizontal semicircular canal to be parallel to gravity. It is also necessary to move the otolith by swinging the head. As a result, we developed two diagnostic maneuvers: the 60° roll test and the prone roll test. We also performed simulations to observe otolith movement and predict nystagmus performance.ConclusionsThe 60° roll test and the prone roll test can complement the supine roll test. Compared to the supine roll test, they not only effectively differentiate canalolithiasis from cupulolithiasis, but also make it easier to determine the position of the otoliths, and the characteristics of the nystagmus are more pronounced. Significant diagnostic features have significant potential benefits for home and telemedicine.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Reference25 articles.

1. Benign paroxysmal vertigo of the horizontal canal;Pagnini;ORL,1989

2. A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV;Squires;J Biomech,2004

3. The mechanics of benign paroxysmal vertigo;Hall;J Otolaryngol,1979

4. Cupulolithiasis;Schuknecht;Arch Otolaryngol,1969

5. Theoretical models for the mechanisms of benign paroxysmal positional vertigo;House;Audiol Neurootol,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3