Morphological Changes of Frontal Areas in Male Individuals With HIV: A Deformation-Based Morphometry Analysis

Author:

Chen Guochao,Cai Dan-Chao,Song Fengxiang,Zhan Yi,Wei Lei,Shi Chunzi,Wang He,Shi Yuxin

Abstract

ObjectivePrevious studies on HIV-infected (HIV+) individuals have revealed brain structural alterations underlying HIV-associated neurocognitive disorders. Most studies have adopted the widely used voxel-based morphological analysis of T1-weighted images or tracked-based analysis of diffusion tensor images. In this study, we investigated the HIV-related morphological changes using the deformation-based morphometry (DBM) analysis of T1-weighted images, which is another useful tool with high regional sensitivity.Materials and MethodsA total of 157 HIV+ (34.7 ± 8.5 years old) and 110 age-matched HIV-uninfected (HIV-) (33.7 ± 10.1 years old) men were recruited. All participants underwent neurocognitive assessments and brain scans, including high-resolution structural imaging and resting-state functional imaging. Structural alterations in HIV+ individuals were analyzed using DBM. Functional brain networks connected to the deformed regions were further investigated in a seed-based connectivity analysis. The correlations between imaging and cognitive or clinical measures were examined.ResultsThe DBM analysis revealed decreased values (i.e., tissue atrophy) in the bilateral frontal regions in the HIV+ group, including bilateral superior frontal gyrus, left middle frontal gyrus, and their neighboring white matter tract, superior corona radiata. The functional connectivity between the right superior frontal gyrus and the right inferior temporal region was enhanced in the HIV+ group, the connectivity strength of which was significantly correlated with the global deficit scores (r = 0.214, P = 0.034), and deficits in learning (r = 0.246, P = 0.014) and recall (r = 0.218, P = 0.031). Increased DBM indexes (i.e., tissue enlargement) of the right cerebellum were also observed in the HIV+ group.ConclusionThe current study revealed both gray and white matter volume changes in frontal regions and cerebellum in HIV+ individuals using DBM, complementing previous voxel-based morphological studies. Structural alterations were not limited to the local regions but were accompanied by disrupted functional connectivity between them and other relevant regions. Disruptions in neural networks were associated with cognitive performance, which may be related to HIV-associated neurocognitive disorders.

Funder

Shanghai Municipal Health and Family Planning Commission

Shanghai Municipal Health Commission

Science and Technology Commission of Shanghai Municipality

National Institute of Neurological Disorders and Stroke

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Reference53 articles.

1. Pathways to neuronal injury and apoptosis in HIV-associated dementia;Kaul;Nature.,2001

2. Enhanced expression of fractalkine in HIV-1 associated dementia;Pereira;J Neuroimmunol.,2001

3. When human immunodeficiency virus meets chemokines and microglia: neuroprotection or neurodegeneration?;Mocchetti;J Neuroimmune Pharmacol.,2013

4. Updated research nosology for HIV-associated neurocognitive disorders;Antinori;Neurology.,2007

5. Neurologic complications of HIV disease and their treatment;Letendre;Top HIV Med.,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3