Influence of Stochastic Resonance on Manual Dexterity in Children With Developmental Coordination Disorder: A Double-Blind Interventional Study

Author:

Nobusako Satoshi,Osumi Michihiro,Matsuo Atsushi,Furukawa Emi,Maeda Takaki,Shimada Sotaro,Nakai Akio,Morioka Shu

Abstract

Background: There is increasing evidence that the stochastic resonance (SR) phenomenon provided by subthreshold mechanical noise stimulation improves the sensory-motor system. However, the effect of SR on children with developmental coordination disorder (DCD) is unclear. The purpose of this study was to assess whether SR activated by subthreshold vibrotactile noise stimulation of the wrist influences manual dexterity in children with DCD.Methods: A double-blind interventional study was conducted. Participants were 30 children (age: 9.3 ± 1.44 years, range 6–11 years; 27 male, three female; 25 right-handed, five left-handed) meeting DCD diagnostic criteria in DSM-5. The manual dexterity test was administered the day before SR intervention (baseline-data). SR was elicited using subthreshold vibrotactile noise stimulation at 60% of the vibrotactile threshold measured at the wrist. SR was delivered two times and the manual dexterity test was administered during each SR stimulation block (SR-on condition) and after each SR stimulation block (SR-off), for a total of four measurements. Target outcomes were the component score, the standard score, and the percentile score of the manual dexterity test.Results: The manual dexterity test scores in the SR-on condition were significantly improved compared to scores at the baseline and in the SR-off condition (p < 0.001).Conclusions: The present study showed that subthreshold noise stimulation eliciting SR significantly improved manual dexterity outcomes in children with DCD during stimulation but not after stimulation. Future studies will need to investigate the carry-over effects of SR stimulation.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Clinical Neurology,Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3