Data sharing in neurodegenerative disease research: challenges and learnings from the innovative medicines initiative public-private partnership model

Author:

Bradshaw Angela,Hughes Nigel,Vallez-Garcia David,Chokoshvili Davit,Owens Andrew,Hansen Clint,Emmert Kirsten,Maetzler Walter,Killin Lewis,Barnes Rodrigo,Brookes Anthony J.,Visser Pieter Jelle,Hofmann-Apitius Martin,Diaz Carlos,Steukers Lennert

Abstract

Efficient data sharing is hampered by an array of organizational, ethical, behavioral, and technical challenges, slowing research progress and reducing the utility of data generated by clinical research studies on neurodegenerative diseases. There is a particular need to address differences between public and private sector environments for research and data sharing, which have varying standards, expectations, motivations, and interests. The Neuronet data sharing Working Group was set up to understand the existing barriers to data sharing in public-private partnership projects, and to provide guidance to overcome these barriers, by convening data sharing experts from diverse projects in the IMI neurodegeneration portfolio. In this policy and practice review, we outline the challenges and learnings of the WG, providing the neurodegeneration community with examples of good practices and recommendations on how to overcome obstacles to data sharing. These obstacles span organizational issues linked to the unique structure of cross-sectoral, collaborative research initiatives, to technical issues that affect the storage, structure and annotations of individual datasets. We also identify sociotechnical hurdles, such as academic recognition and reward systems that disincentivise data sharing, and legal challenges linked to heightened perceptions of data privacy risk, compounded by a lack of clear guidance on GDPR compliance mechanisms for public-private research. Focusing on real-world, neuroimaging and digital biomarker data, we highlight particular challenges and learnings for data sharing, such as data management planning, development of ethical codes of conduct, and harmonization of protocols and curation processes. Cross-cutting solutions and enablers include the principles of transparency, standardization and co-design – from open, accessible metadata catalogs that enhance findability of data, to measures that increase visibility and trust in data reuse.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3