Astrocytic GABA Accumulation in Experimental Temporal Lobe Epilepsy

Author:

Müller Julia,Timmermann Aline,Henning Lukas,Müller Hendrik,Steinhäuser Christian,Bedner Peter

Abstract

An imbalance of excitation and inhibition has been associated with the pathophysiology of epilepsy. Loss of GABAergic interneurons and/or synaptic inhibition has been shown in various epilepsy models and in human epilepsy. Despite this loss, several studies reported preserved or increased tonic GABAA receptor-mediated currents in epilepsy, raising the question of the source of the inhibitory transmitter. We used the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) to answer this question. In our model we observed profound loss of interneurons in the sclerotic hippocampal CA1 region and dentate gyrus already 5 days after epilepsy induction. Consistent with the literature, the absence of interneurons caused no reduction of tonic inhibition of CA1 pyramidal neurons. In dentate granule cells the inhibitory currents were even increased in epileptic tissue. Intriguingly, immunostaining of brain sections from epileptic mice with antibodies against GABA revealed strong and progressive accumulation of the neurotransmitter in reactive astrocytes. Pharmacological inhibition of the astrocytic GABA transporter GAT3 did not affect tonic inhibition in the sclerotic hippocampus, suggesting that this transporter is not responsible for astrocytic GABA accumulation or release. Immunostaining further indicated that both decarboxylation of glutamate and putrescine degradation accounted for the increased GABA levels in reactive astrocytes. Together, our data provide evidence that the preserved tonic inhibitory currents in the epileptic brain are mediated by GABA overproduction and release from astrocytes. A deeper understanding of the underlying mechanisms may lead to new strategies for antiepileptic drug therapy.

Funder

Horizon 2020 Framework Programme

Bundesministerium für Bildung und Forschung

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Astrocyte dysregulation as an epileptogenic factor: a systematic review;The Egyptian Journal of Neurology, Psychiatry and Neurosurgery;2024-06-10

2. Role and mechanism of EphB3 in epileptic seizures and epileptogenesis through Kalirin;Molecular and Cellular Neuroscience;2024-03

3. Exploring multi-omics strategies for herbal treatment of drug-resistant epilepsy: a comprehensive review;Traditional Medicine Research;2024

4. Non-Neuronal GABA in Neocortical Neurografts of the Rats;Российский физиологический журнал им  И  М  Сеченова;2023-12-01

5. Non-Neuronal GABA in Neocortical Neurografts of the Rats;Journal of Evolutionary Biochemistry and Physiology;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3