Author:
Sun Yueqian,Ren Guoping,Ren Jiechuan,Shan Wei,Han Xiong,Lian Yajun,Wang Tiancheng,Wang Qun
Abstract
The aim of this retrospective study was to derive and validate a reliable nomogram for predicting prognosis of autoimmune encephalitis (AE). A multi-center retrospective study was conducted in four hospitals in China, using a random split-sample method to allocate 173 patients into either a training (n = 126) or validation (n = 47) dataset. Demographic, radiographic and therapeutic presentation, combined with clinical features were collected. A modified Rankin Scale (mRS) at discharge was the principal outcome variable. A backward-stepwise approach based on the Akaike information criterion was used to test predictors and construct the final, parsimonious model. Multivariable analysis was conducted using logistic regression to develop a prognosis model and validate a nomogram using an independent dataset. The performance of the model was assessed using receiver operating characteristic curves and a Hosmer-Lemeshow test. The final nomogram model considered age, viral prodrome, consciousness impairment, memory dysfunction and autonomic dysfunction as predictors. Model validations displayed a good level of discrimination in the validation set: area under the Receiver operator characteristic curve = 0.72 (95% Confidence Interval: 0.56–0.88), Hosmer–Lemeshow analysis suggesting good calibration (chi-square: 10.33; p = 0.41). The proposed nomogram demonstrated considerable potential for clinical utility in prediction of prognosis in autoimmune encephalitis.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Clinical Neurology,Neurology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献