Acoustic analysis in stuttering: a machine-learning study

Author:

Asci Francesco,Marsili Luca,Suppa Antonio,Saggio Giovanni,Michetti Elena,Di Leo Pietro,Patera Martina,Longo Lucia,Ruoppolo Giovanni,Del Gado Francesca,Tomaiuoli Donatella,Costantini Giovanni

Abstract

BackgroundStuttering is a childhood-onset neurodevelopmental disorder affecting speech fluency. The diagnosis and clinical management of stuttering is currently based on perceptual examination and clinical scales. Standardized techniques for acoustic analysis have prompted promising results for the objective assessment of dysfluency in people with stuttering (PWS).ObjectiveWe assessed objectively and automatically voice in stuttering, through artificial intelligence (i.e., the support vector machine – SVM classifier). We also investigated the age-related changes affecting voice in stutterers, and verified the relevance of specific speech tasks for the objective and automatic assessment of stuttering.MethodsFifty-three PWS (20 children, 33 younger adults) and 71 age−/gender-matched controls (31 children, 40 younger adults) were recruited. Clinical data were assessed through clinical scales. The voluntary and sustained emission of a vowel and two sentences were recorded through smartphones. Audio samples were analyzed using a dedicated machine-learning algorithm, the SVM to compare PWS and controls, both children and younger adults. The receiver operating characteristic (ROC) curves were calculated for a description of the accuracy, for all comparisons. The likelihood ratio (LR), was calculated for each PWS during all speech tasks, for clinical-instrumental correlations, by using an artificial neural network (ANN).ResultsAcoustic analysis based on machine-learning algorithm objectively and automatically discriminated between the overall cohort of PWS and controls with high accuracy (88%). Also, physiologic ageing crucially influenced stuttering as demonstrated by the high accuracy (92%) of machine-learning analysis when classifying children and younger adults PWS. The diagnostic accuracies achieved by machine-learning analysis were comparable for each speech task. The significant clinical-instrumental correlations between LRs and clinical scales supported the biological plausibility of our findings.ConclusionAcoustic analysis based on artificial intelligence (SVM) represents a reliable tool for the objective and automatic recognition of stuttering and its relationship with physiologic ageing. The accuracy of the automatic classification is high and independent of the speech task. Machine-learning analysis would help clinicians in the objective diagnosis and clinical management of stuttering. The digital collection of audio samples here achieved through smartphones would promote the future application of the technique in a telemedicine context (home environment).

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3