Practical tool to identify Spasticity-Plus Syndrome amongst patients with multiple sclerosis. Algorithm development based on a conjoint analysis

Author:

Fernández Fernández Óscar,Costa-Frossard Lucienne,Martínez Ginés Maria Luisa,Montero Escribano Paloma,Prieto González José María,Ramió-Torrentà Lluís,Aladro Yolanda,Alonso Torres Ana,Álvarez Rodríguez Elena,Labiano-Fontcuberta Andrés,Landete Pascual Lamberto,Miralles Martínez Ambrosio,Moral Torres Ester,Oliva-Nacarino Pedro

Abstract

IntroductionThe Spasticity-Plus Syndrome (SPS) in multiple sclerosis (MS) refers to a combination of spasticity and other signs/symptoms such as spasms, cramps, bladder dysfunction, tremor, sleep disorder, pain, and fatigue. The main purpose is to develop a user-friendly tool that could help neurologists to detect SPS in MS patients as soon as possible.MethodsA survey research based on a conjoint analysis approach was used. An orthogonal factorial design was employed to form 12 patient profiles combining, at random, the eight principal SPS signs/symptoms. Expert neurologists evaluated in a survey and a logistic regression model determined the weight of each SPS sign/symptom, classifying profiles as SPS or not.Results72 neurologists participated in the survey answering the conjoint exercise. Logistic regression results of the survey showed the relative contribution of each sign/symptom to the classification as SPS. Spasticity was the most influential sign, followed by spasms, tremor, cramps, and bladder dysfunction. The goodness of fit of the model was appropriate (AUC = 0.816). Concordance between the experts’ evaluation vs. model estimation showed strong Pearson’s (r = 0.936) and Spearman’s (r = 0.893) correlation coefficients. The application of the algorithm provides with a probability of showing SPS and the following ranges are proposed to interpret the results: high (> 60%), moderate (30–60%), or low (< 30%) probability of SPS.DiscussionThis study offers an algorithmic tool to help healthcare professionals to identify SPS in MS patients. The use of this tool could simplify the management of SPS, reducing side effects related with polypharmacotherapy.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3