Fine tuned personalized machine learning models to detect insomnia risk based on data from a smart bed platform

Author:

Winger Trevor,Chellamuthu Vidhya,Guzenko Dmytro,Aloia Mark,Barr Shawn,DeFranco Susan,Gorski Brandon,Mushtaq Faisal,Garcia-Molina Gary

Abstract

IntroductionInsomnia causes serious adverse health effects and is estimated to affect 10–30% of the worldwide population. This study leverages personalized fine-tuned machine learning algorithms to detect insomnia risk based on questionnaire and longitudinal objective sleep data collected by a smart bed platform.MethodsUsers of the Sleep Number smart bed were invited to participate in an IRB approved study which required them to respond to four questionnaires (which included the Insomnia Severity Index; ISI) administered 6 weeks apart from each other in the period from November 2021 to March 2022. For 1,489 participants who completed at least 3 questionnaires, objective data (which includes sleep/wake and cardio-respiratory metrics) collected by the platform were queried for analysis. An incremental, passive-aggressive machine learning model was used to detect insomnia risk which was defined by the ISI exceeding a given threshold. Three ISI thresholds (8, 10, and 15) were considered. The incremental model is advantageous because it allows personalized fine-tuning by adding individual training data to a generic model.ResultsThe generic model, without personalizing, resulted in an area under the receiving-operating curve (AUC) of about 0.5 for each ISI threshold. The personalized fine-tuning with the data of just five sleep sessions from the individual for whom the model is being personalized resulted in AUCs exceeding 0.8 for all ISI thresholds. Interestingly, no further AUC enhancements resulted by adding personalized data exceeding ten sessions.DiscussionThese are encouraging results motivating further investigation into the application of personalized fine tuning machine learning to detect insomnia risk based on longitudinal sleep data and the extension of this paradigm to sleep medicine.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3