Predicting Autonomous Shuttle Acceptance in Older Drivers Based on Technology Readiness/Use/Barriers, Life Space, Driving Habits, and Cognition

Author:

Classen Sherrilene,Mason Justin R.,Hwangbo Seung Woo,Sisiopiku Virginia

Abstract

Shared autonomous vehicle services (i. e., automated shuttles, AS) are being deployed globally and may improve older adults (>65 years old) mobility, independence, and participation in the community. However, AS must be user friendly and provide safety benefits if older drivers are to accept and adopt this technology. Current potential barriers to their acceptance of AS include a lack of trust in the systems and hesitation to adopt emerging technology. Technology readiness, perceived ease of use, perceived barriers, and intention to use the technology, are particularly important constructs to consider in older adults' acceptance and adoption practices of AS. Likewise, person factors, i.e., age, life space mobility, driving habits, and cognition predict driving safety among older drivers. However, we are not sure if and how these factors may also predict older adults' intention to use the AS. In the current study, we examined responses from 104 older drivers (Mage = 74.3, SDage = 5.9) who completed the Automated Vehicle User Perception Survey (AVUPS) before and after riding in an on-road automated shuttle (EasyMile EZ10). The study participants also provided information through the Technology Readiness Index, Technology Acceptance Measure, Life Space Questionnaire, Driving Habits Questionnaire, Trail-making Test Part A and Part B (TMT A and TMT B). Older drivers' age, cognitive scores (i.e., TMT B), driving habits (i.e., crashes and/or citations, exposure, and difficulty of driving) and life space (i.e., how far older adults venture from their primary dwelling) were entered into four models to predict their acceptance of AVs—operationalized according to the subscales (i.e., intention to use, perceived barriers, and well-being) and the total acceptance score of the AVUPS. Next, a partial least squares structural equation model (PLS-SEM) elucidated the relationships between, technology readiness, perceived ease of use, barriers to AV acceptance, life space, crashes and/or citations, driving exposure, driving difficulty, cognition, and intention to use AS. The regression models indicated that neither age nor cognition (TMT B) significantly predicted older drivers' perceptions of AVs; but their self-reported driving difficulty (p = 0.019) predicted their intention to use AVs: R2 = 6.18%, F (2,101) = 4.554, p = 0.040. Therefore, intention to use was the dependent variable in the subsequent PLS-SEM. Findings from the PLS-SEM (R2 = 0.467) indicated the only statistically significant predictors of intention to use were technology readiness (β = 0.247, CI = 0.087-0.411) and barriers to AV acceptance (β = −0.504, CI = 0.285-0.692). These novel findings provide evidence suggesting that technology readiness and barriers must be better understood if older drivers are to accept and adopt AS.

Funder

U.S. Department of Transportation

Publisher

Frontiers Media SA

Subject

Clinical Neurology,Neurology

Reference80 articles.

1. Driving life expectancy of persons aged 70 years and older in the United States;Foley,2002

2. 2019

3. Near-vision acuity levels and performance on neuropsychological assessments used in occupational therapy;Hunt;Am J Occup Ther.,2010

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3