Automatic risk prediction of intracranial aneurysm on CTA image with convolutional neural networks and radiomics analysis

Author:

Xie Yuan,Liu Shuyu,Lin Hen,Wu Min,Shi Feng,Pan Feng,Zhang Lichi,Song Bin

Abstract

BackgroundIntracranial aneurysm (IA) is a nodular protrusion of the arterial wall caused by the localized abnormal enlargement of the lumen of a brain artery, which is the primary cause of subarachnoid hemorrhage. Accurate rupture risk prediction can effectively aid treatment planning, but conventional rupture risk estimation based on clinical information is subjective and time-consuming.MethodsWe propose a novel classification method based on the CTA images for differentiating aneurysms that are prone to rupture. The main contribution of this study is that the learning-based method proposed in this study leverages deep learning and radiomics features and integrates clinical information for a more accurate prediction of the risk of rupture. Specifically, we first extracted the provided aneurysm regions from the CTA images as 3D patches with the lesions located at their centers. Then, we employed an encoder using a 3D convolutional neural network (CNN) to extract complex latent features automatically. These features were then combined with radiomics features and clinical information. We further applied the LASSO regression method to find optimal features that are highly relevant to the rupture risk information, which is fed into a support vector machine (SVM) for final rupture risk prediction.ResultsThe experimental results demonstrate that our classification method can achieve accuracy and AUC scores of 89.78% and 89.09%, respectively, outperforming all the alternative methods.DiscussionOur study indicates that the incorporation of CNN and radiomics analysis can improve the prediction performance, and the selected optimal feature set can provide essential biomarkers for the determination of rupture risk, which is also of great clinical importance for individualized treatment planning and patient care of IA.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Reference42 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3