Impact of a passive upper-body exoskeleton on muscular activity and precision in overhead single and dual tasks: an explorative randomized crossover study

Author:

Gräf Julia,Grospretre Sidney,Argubi-Wollesen Andreas,Wollesen Bettina

Abstract

IntroductionTasks performed at or above head height in industrial workplaces pose a significant challenge due to their association with musculoskeletal disorders. Upper-body exoskeletons have been identified as a potential solution for mitigating musculoskeletal loads and fighting against excessive muscular fatigue. However, the influence of such support on fine motor control, as well as on cognitive-motor interference, has received limited attention thus far. Therefore, this crossover randomized study aimed to investigate the impact of the use of a passive upper-body exoskeleton in the presence of muscular fatigue or not. Additionally, focusing on differences between single (ST) and dual (DT) industrial tasks consisting of overhead speed and accuracy exercises.MethodsIn both scenarios, N = 10 participants (5 male/5 female) engaged in an overhead precision task using a nail gun to precisely target specific areas on three differently sized regions, based on Fitts’ law paradigm (speed-accuracy trade-off task). This was done with and without the passive upper-body exoskeleton, before and immediately after a fatiguing exercise of shoulder and leg muscles. In addition, a second task (dual-task, DT) was carried out in which the occurrence of an auditory signal had to be counted. The main outcomes were muscular activation of the shoulder girdle as well as the time to perform speed-accuracy tasks of different difficulty indexes (calculated by means of Fitts’ law).Results and discussionIn the absence of fatigue, the exoskeleton did not affect the speed-accuracy trade-off management of participants in the single task, but it did in the dual-task conditions. However, after muscle fatigue, the speed-accuracy trade-off was differently affected when comparing its execution with or without the exoskeleton. In general, the dual task resulted in longer times to perform the different tasks, whether it was with or without the exoskeleton. Furthermore, the use of the exoskeleton decreased muscle activity, which is associated with less physical effort, but only significantly for the M. deltoideus and M. trapezius when compared by tasks. Overall, these study findings highlight the potential supportive effects of using an upper-body exoskeleton for industrial overhead tasks.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3