Focal vibrations enhance somatosensory facilitation in healthy subjects: A pilot study on Equistasi® and high-frequency oscillations

Author:

Cruciani Alessandro,Lanzone Jacopo,Musumeci Gabriella,Di Lazzaro Vincenzo,Marano Massimo

Abstract

BackgroundEquistasi® is a vibrotactile device composed of nanotechnology fibers that converts temperature change into mechanical energy by self-producing a focal vibration. It is used in non-pharmacological rehabilitation in patients with movement disorders and multiple sclerosis sequelae. Nonetheless, the mechanism underlying such an improvement in motor functions is still poorly understood.ObjectivesWe designed a small uncontrolled pilot trial to explore the effect of Equistasi® on the somatosensory pathway through the analysis of high-frequency oscillations (HFOs).MethodsFor all the included subjects, we recorded somatosensory-evoked potentials (SEPs) at the baseline (T0) and at 60 min after the application of Equistasi® (T1) on the seventh cervical vertebra level and at the forearm over each flexor carpi radialis, bilaterally. Then, we extracted the HFOs from the N20 signal and compared the HFO duration and area under the curve pre- and post-Equistasi® application.ResultsIn a head-to-head comparison of T0 to T1 data, there was a statistically significant reduction in the total HFO area (p < 0.01), which was prominent for the late component (p = 0.025). No statistical differences have been found between T0 and T1 HFO duration (p > 0.05). We further evaluated the N20 amplitude from the onset to the N20 peak to avoid possible interpretational bias. No statistical differences have been found between T0 and T1 (p = 0.437).ConclusionOur clinical hypothesis, supported by preliminary data, is that vibrotactile afference delivered by the device could work by interfering with the somatosensory processing, rather than by peripheral effects.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3