Dynamic causal model application on hierarchical human motor control estimation in visuomotor tasks

Author:

Yang Ningjia,Ueda Sayako,Costa-García Álvaro,Okajima Shotaro,Tanabe Hiroki C.,Li Jingsong,Shimoda Shingo

Abstract

IntroductionIn brain function research, each brain region has been investigated independently, and how different parts of the brain work together has been examined using the correlations among them. However, the dynamics of how different brain regions interact with each other during time-varying tasks, such as voluntary motion tasks, are still not well-understood.MethodsTo address this knowledge gap, we conducted functional magnetic resonance imaging (fMRI) using target tracking tasks with and without feedback. We identified the motor cortex, cerebellum, and visual cortex by using a general linear model during the tracking tasks. We then employed a dynamic causal model (DCM) and parametric empirical Bayes to quantitatively elucidate the interactions among the left motor cortex (ML), right cerebellum (CBR) and left visual cortex (VL), and their roles as higher and lower controllers in the hierarchical model.ResultsWe found that the tracking task with visual feedback strongly affected the modulation of connection strength in ML → CBR and ML↔VL. Moreover, we found that the modulation of VL → ML, ML → ML, and ML → CBR by the tracking task with visual feedback could explain individual differences in tracking performance and muscle activity, and we validated these findings by leave-one-out cross-validation.DiscussionWe demonstrated the effectiveness of our approach for understanding the mechanisms underlying human motor control. Our proposed method may have important implications for the development of new technologies in personalized interventions and technologies, as it sheds light on how different brain regions interact and work together during a motor task.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3