Automatic classification of hyperkinetic, tonic, and tonic-clonic seizures using unsupervised clustering of video signals

Author:

Ojanen Petri,Kertész Csaba,Morales Elizabeth,Rai Pragya,Annala Kaapo,Knight Andrew,Peltola Jukka

Abstract

IntroductionThis study evaluated the accuracy of motion signals extracted from video monitoring data to differentiate epileptic motor seizures in patients with drug-resistant epilepsy. 3D near-infrared video was recorded by the Nelli® seizure monitoring system (Tampere, Finland).Methods10 patients with 130 seizures were included in the training dataset, and 17 different patients with 98 seizures formed the testing dataset. Only seizures with unequivocal hyperkinetic, tonic, and tonic-clonic semiology were included. Motion features from the catch22 feature collection extracted from video were explored to transform the patients' videos into numerical time series for clustering and visualization.ResultsChanges in feature generation provided incremental discrimination power to differentiate between hyperkinetic, tonic, and tonic-clonic seizures. Temporal motion features showed the best results in the unsupervised clustering analysis. Using these features, the system differentiated hyperkinetic, tonic and tonic-clonic seizures with 91, 88, and 45% accuracy after 100 cross-validation runs, respectively. F1-scores were 93, 90, and 37%, respectively. Overall accuracy and f1-score were 74%.ConclusionThe selected features of motion distinguished semiological differences within epileptic seizure types, enabling seizure classification to distinct motor seizure types. Further studies are needed with a larger dataset and additional seizure types. These results indicate the potential of video-based hybrid seizure monitoring systems to facilitate seizure classification improving the algorithmic processing and thus streamlining the clinical workflow for human annotators in hybrid (algorithmic-human) seizure monitoring systems.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3