Assessing brain microstructural changes in chronic kidney disease: a diffusion imaging study using multiple models

Author:

Han Limei,Yang Jie,Yuan Chao,Zhang Wei,Huang Yantao,Zeng Lingli,Zhong Jianquan

Abstract

ObjectivesTo explore the effectiveness of diffusion quantitative parameters derived from advanced diffusion models in detecting brain microstructural changes in patients with chronic kidney disease (CKD).MethodsThe study comprised 44 CKD patients (eGFR<59 mL/min/1.73 m2) and 35 age-and sex-matched healthy controls. All patients underwent diffusion spectrum imaging (DSI) and conventional magnetic resonance imaging. Reconstructed to obtain diffusion MRI models, including diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI) and Mean Apparent Propagator (MAP)-MRI, were processed to obtain multi-parameter maps. The Tract-Based Spatial Statistics (TBSS) analysis was utilized for detecting microstructural differences and Pearson correlation analysis assessed the relationship between renal metabolism markers and diffusion parameters in the brain regions of CKD patients. Receiver operating characteristic (ROC) curve analysis assessed the diagnostic performance of diffusion models, with AUC comparisons made using DeLong’s method.ResultsSignificant differences were noted in DTI, NODDI, and MAP-MRI parameters between CKD patients and controls (p < 0.05). DTI indicated a decrease in Fractional Anisotropy(FA) and an increase in Mean and Radial Diffusivity (MD and RD) in CKD patients. NODDI indicated decreased Intracellular and increased Extracellular Volume Fractions (ICVF and ECVF). MAP-MRI identified extensive microstructural changes, with elevated Mean Squared Displacement (MSD) and Q-space Inverse Variance (QIV) values, and reduced Non-Gaussianity (NG), Axial Non-Gaussianity (NGAx), Radial Non-Gaussianity (NGRad), Return-to-Origin Probability (RTOP), Return-to-Axis Probability (RTAP), and Return-to-Plane Probability (RTPP). There was a moderate correlation between serum uric acid (SUA) and diffusion parameters in six brain regions (p < 0.05). ROC analysis showed the AUC values of DTI_FA ranged from 0.70 to 0.793. MAP_NGAx in the Retrolenticular part of the internal capsule R reported a high AUC value of 0.843 (p < 0.05), which was not significantly different from other diffusion parameters (p > 0.05).ConclusionThe advanced diffusion models (DTI, NODDI, and MAP-MRI) are promising for detecting brain microstructural changes in CKD patients, offering significant insights into CKD-affected brain areas.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3