Analyzing time-to-first-spike coding schemes: A theoretical approach

Author:

Bonilla Lina,Gautrais Jacques,Thorpe Simon,Masquelier Timothée

Abstract

Spiking neural networks (SNNs) using time-to-first-spike (TTFS) codes, in which neurons fire at most once, are appealing for rapid and low power processing. In this theoretical paper, we focus on information coding and decoding in those networks, and introduce a new unifying mathematical framework that allows the comparison of various coding schemes. In an early proposal, called rank-order coding (ROC), neurons are maximally activated when inputs arrive in the order of their synaptic weights, thanks to a shunting inhibition mechanism that progressively desensitizes the neurons as spikes arrive. In another proposal, called NoM coding, only the first N spikes of M input neurons are propagated, and these “first spike patterns” can be readout by downstream neurons with homogeneous weights and no desensitization: as a result, the exact order between the first spikes does not matter. This paper also introduces a third option—“Ranked-NoM” (R-NoM), which combines features from both ROC and NoM coding schemes: only the first N input spikes are propagated, but their order is readout by downstream neurons thanks to inhomogeneous weights and linear desensitization. The unifying mathematical framework allows the three codes to be compared in terms of discriminability, which measures to what extent a neuron responds more strongly to its preferred input spike pattern than to random patterns. This discriminability turns out to be much higher for R-NoM than for the other codes, especially in the early phase of the responses. We also argue that R-NoM is much more hardware-friendly than the original ROC proposal, although NoM remains the easiest to implement in hardware because it only requires binary synapses.

Funder

Fundación para el futuro de Colombia

Centre National de la Recherche Scientifique

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3