An image caption model based on attention mechanism and deep reinforcement learning

Author:

Bai Tong,Zhou Sen,Pang Yu,Luo Jiasai,Wang Huiqian,Du Ya

Abstract

Image caption technology aims to convert visual features of images, extracted by computers, into meaningful semantic information. Therefore, the computers can generate text descriptions that resemble human perception, enabling tasks such as image classification, retrieval, and analysis. In recent years, the performance of image caption has been significantly enhanced with the introduction of encoder-decoder architecture in machine translation and the utilization of deep neural networks. However, several challenges still persist in this domain. Therefore, this paper proposes a novel method to address the issue of visual information loss and non-dynamic adjustment of input images during decoding. We introduce a guided decoding network that establishes a connection between the encoding and decoding parts. Through this connection, encoding information can provide guidance to the decoding process, facilitating automatic adjustment of the decoding information. In addition, Dense Convolutional Network (DenseNet) and Multiple Instance Learning (MIL) are adopted in the image encoder, and Nested Long Short-Term Memory (NLSTM) is utilized as the decoder to enhance the extraction and parsing capability of image information during the encoding and decoding process. In order to further improve the performance of our image caption model, this study incorporates an attention mechanism to focus details and constructs a double-layer decoding structure, which facilitates the enhancement of the model in terms of providing more detailed descriptions and enriched semantic information. Furthermore, the Deep Reinforcement Learning (DRL) method is employed to train the model by directly optimizing the identical set of evaluation indexes, which solves the problem of inconsistent training and evaluation standards. Finally, the model is trained and tested on MS COCO and Flickr 30 k datasets, and the results show that the model has improved compared with commonly used models in the evaluation indicators such as BLEU, METEOR and CIDEr.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3