Author:
Yue Ye,Baltes Marc,Abuhajar Nidal,Sun Tao,Karanth Avinash,Smith Charles D.,Bihl Trevor,Liu Jundong
Abstract
IntroductionThe field of machine learning has undergone a significant transformation with the progress of deep artificial neural networks (ANNs) and the growing accessibility of annotated data. ANNs usually require substantial power and memory usage to achieve optimal performance. Spiking neural networks (SNNs) have recently emerged as a low-power alternative to ANNs due to their sparsity nature. Despite their energy efficiency, SNNs are generally more difficult to be trained than ANNs.MethodsIn this study, we propose a novel three-stage SNN training scheme designed specifically for segmenting human hippocampi from magnetic resonance images. Our training pipeline starts with optimizing an ANN to its maximum capacity, then employs a quick ANN-SNN conversion to initialize the corresponding spiking network. This is followed by spike-based backpropagation to fine-tune the converted SNN. In order to understand the reason behind performance decline in the converted SNNs, we conduct a set of experiments to investigate the output scaling issue. Furthermore, we explore the impact of binary and ternary representations in SNN networks and conduct an empirical evaluation of their performance through image classification and segmentation tasks.Results and discussionBy employing our hybrid training scheme, we observe significant advantages over both ANN-SNN conversion and direct SNN training solutions in terms of segmentation accuracy and training efficiency. Experimental results demonstrate the effectiveness of our model in achieving our design goals.
Reference29 articles.
1. “Long short-term memory and learning-to-learn in networks of spiking neurons,”;Bellec;Advances in Neural Information Processing Systems,2018
2. “Accurate and consistent hippocampus segmentation through convolutional LSTM and view ensemble,”;Chen
3. “Hippocampus segmentation through multi-view ensemble convnets,”;Chen
4. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation;Coupé;Neuroimage,2011
5. Advancing neuromorphic computing with Loihi: a survey of results and outlook;Davies;Proc. IEEE,2021
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献