Spiking neural networks fine-tuning for brain image segmentation

Author:

Yue Ye,Baltes Marc,Abuhajar Nidal,Sun Tao,Karanth Avinash,Smith Charles D.,Bihl Trevor,Liu Jundong

Abstract

IntroductionThe field of machine learning has undergone a significant transformation with the progress of deep artificial neural networks (ANNs) and the growing accessibility of annotated data. ANNs usually require substantial power and memory usage to achieve optimal performance. Spiking neural networks (SNNs) have recently emerged as a low-power alternative to ANNs due to their sparsity nature. Despite their energy efficiency, SNNs are generally more difficult to be trained than ANNs.MethodsIn this study, we propose a novel three-stage SNN training scheme designed specifically for segmenting human hippocampi from magnetic resonance images. Our training pipeline starts with optimizing an ANN to its maximum capacity, then employs a quick ANN-SNN conversion to initialize the corresponding spiking network. This is followed by spike-based backpropagation to fine-tune the converted SNN. In order to understand the reason behind performance decline in the converted SNNs, we conduct a set of experiments to investigate the output scaling issue. Furthermore, we explore the impact of binary and ternary representations in SNN networks and conduct an empirical evaluation of their performance through image classification and segmentation tasks.Results and discussionBy employing our hybrid training scheme, we observe significant advantages over both ANN-SNN conversion and direct SNN training solutions in terms of segmentation accuracy and training efficiency. Experimental results demonstrate the effectiveness of our model in achieving our design goals.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference29 articles.

1. “Long short-term memory and learning-to-learn in networks of spiking neurons,”;Bellec;Advances in Neural Information Processing Systems,2018

2. “Accurate and consistent hippocampus segmentation through convolutional LSTM and view ensemble,”;Chen

3. “Hippocampus segmentation through multi-view ensemble convnets,”;Chen

4. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation;Coupé;Neuroimage,2011

5. Advancing neuromorphic computing with Loihi: a survey of results and outlook;Davies;Proc. IEEE,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3