The Bradykinin B2 Receptor Agonist (NG291) Causes Rapid Onset of Transient Blood–Brain Barrier Disruption Without Evidence of Early Brain Injury

Author:

Rodríguez-Massó Sergio R.,Erickson Michelle A.,Banks William A.,Ulrich Henning,Martins Antonio Henrique

Abstract

Background: The blood–brain barrier (BBB) describes the brain’s highly specialized capillaries, which form a dynamic interface that maintains central nervous system (CNS) homeostasis. The BBB supports the CNS, in part, by preventing the entry of potentially harmful circulating molecules into the brain. However, this specialized function is challenging for the development of CNS therapeutics. Several strategies to facilitate drug delivery into the brain parenchyma via disruption of the BBB have been proposed. Bradykinin has proven effective in disrupting mechanisms across the blood–tumor barrier. Unfortunately, bradykinin has limited therapeutic value because of its short half-life and the undesirable biological activity elicited by its active metabolites.Objective: To evaluate NG291, a stable bradykinin analog, with selective agonist activity on the bradykinin-B2 receptor and its ability to disrupt the BBB transiently.Methods: Sprague Dawley rats and CD-1 mice were subjected to NG291 treatment (either 50 or 100 μg/kg, intravenously). Time and dose-dependent BBB disruption were evaluated by histological analysis of Evans blue (EB) extravasation. Transcellular and paracellular BBB leakage were assessed by infiltration of 99mTc-albumin (66.5 KDa) and 14C-sucrose (340 Da) radiolabeled probes into the brains of CD-1 mice treated with NG291. NG291 influence on P-glycoprotein (P-gp) efflux pump activity was evaluated by quantifying the brain accumulation of 3H-verapamil, a known P-gp substrate, in CD-1 mice.Results: NG291-mediated BBB disruption was localized, dose-dependent, and reversible as measured by EB extravasation. 99mTc-albumin leakage was significantly increased by 50 μg/kg of NG291, whereas 100 μg/kg of NG291 significantly augmented both 14C-sucrose and 99mTc-albumin leakage. NG291 enhanced P-gp efflux transporter activity and was unable to increase brain uptake of the P-gp substrate pralidoxime. NG291 did not evoke significant short-term neurotoxicity, as it did not increase brain water content, the number of Fluoro-Jade C positive cells, or astrocyte activation.Conclusion: Our findings strongly suggest that NG291 increases BBB permeability by two different mechanisms in a dose-dependent manner and increases P-gp efflux transport. This increased permeability may facilitate the penetration into the brain of therapeutic candidates that are not P-gp substrates.

Funder

National Institute of General Medical Sciences

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3