VTSNN: a virtual temporal spiking neural network

Author:

Qiu Xue-Rui,Wang Zhao-Rui,Luan Zheng,Zhu Rui-Jie,Wu Xiao,Zhang Ma-Lu,Deng Liang-Jian

Abstract

Spiking neural networks (SNNs) have recently demonstrated outstanding performance in a variety of high-level tasks, such as image classification. However, advancements in the field of low-level assignments, such as image reconstruction, are rare. This may be due to the lack of promising image encoding techniques and corresponding neuromorphic devices designed specifically for SNN-based low-level vision problems. This paper begins by proposing a simple yet effective undistorted weighted-encoding-decoding technique, which primarily consists of an Undistorted Weighted-Encoding (UWE) and an Undistorted Weighted-Decoding (UWD). The former aims to convert a gray image into spike sequences for effective SNN learning, while the latter converts spike sequences back into images. Then, we design a new SNN training strategy, known as Independent-Temporal Backpropagation (ITBP) to avoid complex loss propagation in spatial and temporal dimensions, and experiments show that ITBP is superior to Spatio-Temporal Backpropagation (STBP). Finally, a so-called Virtual Temporal SNN (VTSNN) is formulated by incorporating the above-mentioned approaches into U-net network architecture, fully utilizing the potent multiscale representation capability. Experimental results on several commonly used datasets such as MNIST, F-MNIST, and CIFAR10 demonstrate that the proposed method produces competitive noise-removal performance extremely which is superior to the existing work. Compared to ANN with the same architecture, VTSNN has a greater chance of achieving superiority while consuming ~1/274 of the energy. Specifically, using the given encoding-decoding strategy, a simple neuromorphic circuit could be easily constructed to maximize this low-carbon strategy.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3