Principal component analysis of photoplethysmography signals for improved gesture recognition

Author:

Ruan Yuwen,Chen Xiang,Zhang Xu,Chen Xun

Abstract

In recent years, researchers have begun to introduce photoplethysmography (PPG) signal into the field of gesture recognition to achieve human-computer interaction on wearable device. Unlike the signals used for traditional neural interface such as electromyography (EMG) and electroencephalograph (EEG), PPG signals are readily available in current commercial wearable devices, which makes it possible to realize practical gesture-based human-computer interaction applications. In the process of gesture execution, the signal collected by PPG sensor usually contains a lot of noise irrelevant to gesture pattern and not conducive to gesture recognition. Toward improving gesture recognition performance based on PPG signals, the main contribution of this study is that it explores the feasibility of using principal component analysis (PCA) decomposition algorithm to separate gesture pattern-related signals from noise, and then proposes a PPG signal processing scheme based on normalization and reconstruction of principal components. For 14 wrist and finger-related gestures, PPG data of three wavelengths of light (green, red, and infrared) are collected from 14 subjects in four motion states (sitting, walking, jogging, and running). The gesture recognition is carried out with Support Vector Machine (SVM) classifier and K-Nearest Neighbor (KNN) classifier. The experimental results verify that PCA decomposition can effectively separate gesture-pattern-related signals from irrelevant noise, and the proposed PCA-based PPG processing scheme can improve the average accuracies of gesture recognition by 2.35∼9.19%. In particular, the improvement is found to be more evident for finger-related (improved by 6.25∼12.13%) than wrist-related gestures (improved by 1.93∼5.25%). This study provides a novel idea for implementing high-precision PPG gesture recognition technology.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference32 articles.

1. Classification of alcoholic and non-alcoholic EEG signals based on sliding-SSA and independent component analysis.;Agarwal;IEEE Sens. J.,2021

2. Multimodal signals subject authentication system;Alotaiby;Proceedings of the 2021 18th international conference on electrical engineering/electronics, computer, telecommunications and information technology(ECTI-CON),2021

3. Principal component analysis.;Bro;Anal. Methods,2014

4. Denoising method of heart sound signals based on self-construct heart sound wavelet.;Cheng;AIP Adv.,2014

5. Support-vector networks.;Cortes;Mach. Learn.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3