A hybrid sensory feedback system for thermal nociceptive warning and protection in prosthetic hand

Author:

Xie Anran,Li Chen,Chou Chih-hong,Li Tie,Dai Chenyun,Lan Ning

Abstract

BackgroundAdvanced prosthetic hands may embed nanosensors and microelectronics in their cosmetic skin. Heat influx may cause damage to these delicate structures. Protecting the integrity of the prosthetic hand becomes critical and necessary to ensure sustainable function. This study aims to mimic the sensorimotor control strategy of the human hand in perceiving nociceptive stimuli and triggering self-protective mechanisms and to investigate how similar neuromorphic mechanisms implemented in prosthetic hand can allow amputees to both volitionally release a hot object upon a nociceptive warning and achieve reinforced release via a bionic withdrawal reflex.MethodsA steady-state temperature prediction algorithm was proposed to shorten the long response time of a thermosensitive temperature sensor. A hybrid sensory strategy for transmitting force and a nociceptive temperature warning using transcutaneous electrical nerve stimulation based on evoked tactile sensations was designed to reconstruct the nociceptive sensory loop for amputees. A bionic withdrawal reflex using neuromorphic muscle control technology was used so that the prosthetic hand reflexively opened when a harmful temperature was detected. Four able-bodied subjects and two forearm amputees randomly grasped a tube at the different temperatures based on these strategies.ResultsThe average prediction error of temperature prediction algorithm was 8.30 ± 6.00%. The average success rate of six subjects in perceiving force and nociceptive temperature warnings was 86.90 and 94.30%, respectively. Under the reinforcement control mode in Test 2, the median reaction time of all subjects was 1.39 s, which was significantly faster than the median reaction time of 1.93 s in Test 1, in which two able-bodied subjects and two amputees participated. Results demonstrated the effectiveness of the integration of nociceptive sensory strategy and withdrawal reflex control strategy in a closed loop and also showed that amputees restored the warning of nociceptive sensation while also being able to withdraw from thermal danger through both voluntary and reflexive protection.ConclusionThis study demonstrated that it is feasible to restore the sensorimotor ability of amputees to warn and react against thermal nociceptive stimuli. Results further showed that the voluntary release and withdrawal reflex can work together to reinforce heat protection. Nevertheless, fusing voluntary and reflex functions for prosthetic performance in activities of daily living awaits a more cogent strategy in sensorimotor control.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3