Multi-Model Adaptation Learning With Possibilistic Clustering Assumption for EEG-Based Emotion Recognition

Author:

Dan Yufang,Tao Jianwen,Zhou Di

Abstract

In machine learning community, graph-based semi-supervised learning (GSSL) approaches have attracted more extensive research due to their elegant mathematical formulation and good performance. However, one of the reasons affecting the performance of the GSSL method is that the training data and test data need to be independently identically distributed (IID); any individual user may show a completely different encephalogram (EEG) data in the same situation. The EEG data may be non-IID. In addition, noise/outlier sensitiveness still exist in GSSL approaches. To these ends, we propose in this paper a novel clustering method based on structure risk minimization model, called multi-model adaptation learning with possibilistic clustering assumption for EEG-based emotion recognition (MA-PCA). It can effectively minimize the influence from the noise/outlier samples based on different EEG-based data distribution in some reproduced kernel Hilbert space. Our main ideas are as follows: (1) reducing the negative impact of noise/outlier patterns through fuzzy entropy regularization, (2) considering the training data and test data are IID and non-IID to obtain a better performance by multi-model adaptation learning, and (3) the algorithm implementation and convergence theorem are also given. A large number of experiments and deep analysis on real DEAP datasets and SEED datasets was carried out. The results show that the MA-PCA method has superior or comparable robustness and generalization performance to EEG-based emotion recognition.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference65 articles.

1. Locally weighted learning.;Atkeson;Artif. Intell. Rev.,1997

2. Laplacian eigenmaps and spectral techniques for embedding and clustering;Belkin;Proceedings of the 14 th International. Conference on Neural Information Processing Systems,2001

3. Manifold regularization: a geometric framework for learning from examples.;Belkin;J. Mach. Learn. Res.,2006

4. Local learning algorithms.;Bottou;Neur. Comput.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3