Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks

Author:

Kim Youngeun,Li Yuhang,Moitra Abhishek,Yin Ruokai,Panda Priyadarshini

Abstract

Spiking Neural Networks (SNNs) have gained increasing attention as energy-efficient neural networks owing to their binary and asynchronous computation. However, their non-linear activation, that is Leaky-Integrate-and-Fire (LIF) neuron, requires additional memory to store a membrane voltage to capture the temporal dynamics of spikes. Although the required memory cost for LIF neurons significantly increases as the input dimension goes larger, a technique to reduce memory for LIF neurons has not been explored so far. To address this, we propose a simple and effective solution, EfficientLIF-Net, which shares the LIF neurons across different layers and channels. Our EfficientLIF-Net achieves comparable accuracy with the standard SNNs while bringing up to ~4.3× forward memory efficiency and ~21.9× backward memory efficiency for LIF neurons. We conduct experiments on various datasets including CIFAR10, CIFAR100, TinyImageNet, ImageNet-100, and N-Caltech101. Furthermore, we show that our approach also offers advantages on Human Activity Recognition (HAR) datasets, which heavily rely on temporal information. The code has been released at https://github.com/Intelligent-Computing-Lab-Yale/EfficientLIF-Net.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference69 articles.

1. Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip;Akopyan;IEEE Transac. Comput. Aided Des. Integr. Circ. Syst,2015

2. “A public domain dataset for human activity recognition using smartphones,”;Anguita;Esann,2013

3. Coarse-fine convolutional deep-learning strategy for human activity recognition;Avilés-Cruz;Sensors,2019

4. “Differentiable hierarchical and surrogate gradient search for spiking neural networks,”;Che;Advances in Neural Information Processing Systems,2022

5. Pruning of deep spiking neural networks through gradient rewiring;Chen;arXiv preprint arXiv:2105.04916,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Are SNNs Truly Energy-efficient? — A Hardware Perspective;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3