SAST-GCN: Segmentation Adaptive Spatial Temporal-Graph Convolutional Network for P3-Based Video Target Detection

Author:

Lu Runnan,Zeng Ying,Zhang Rongkai,Yan Bin,Tong Li

Abstract

Detecting video-induced P3 is crucial to building the video target detection system based on the brain-computer interface. However, studies have shown that the brain response patterns corresponding to video-induced P3 are dynamic and determined by the interaction of multiple brain regions. This paper proposes a segmentation adaptive spatial-temporal graph convolutional network (SAST-GCN) for P3-based video target detection. To make full use of the dynamic characteristics of the P3 signal data, the data is segmented according to the processing stages of the video-induced P3, and the brain network connections are constructed correspondingly. Then, the spatial-temporal feature of EEG data is extracted by adaptive spatial-temporal graph convolution to discriminate the target and non-target in the video. Especially, a style-based recalibration module is added to select feature maps with higher contributions and increase the feature extraction ability of the network. The experimental results demonstrate the superiority of our proposed model over the baseline methods. Also, the ablation experiments indicate that the segmentation of data to construct the brain connection can effectively improve the recognition performance by reflecting the dynamic connection relationship between EEG channels more accurately.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference42 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3