Author:
Skog Hanna Mari,Määttä Sara,Säisänen Laura,Lakka Timo A.,Haapala Eero A.
Abstract
ObjectiveWe investigated the longitudinal associations of cumulative motor fitness, muscular strength, and cardiorespiratory fitness (CRF) from childhood to adolescence with cortical excitability and inhibition in adolescence. The other objective was to determine cross-sectional associations of motor fitness and muscular strength with brain function in adolescence.MethodsIn 45 healthy adolescents (25 girls and 20 boys) aged 16–19 years, we assessed cortical excitability and inhibition by navigated transcranial magnetic stimulation (nTMS), and motor fitness by 50-m shuttle run test and Box and block test, and muscular strength by standing long jump test. These measures of physical fitness and CRF by maximal exercise were assessed also at the ages 7–9, 9–11, and 15–17 years. Cumulative measures of physical measures were computed by summing up sample-specific z-scores at ages 7–9, 9–11, and 15–17 years.ResultsHigher cumulative motor fitness performance from childhood to adolescence was associated with lower right hemisphere resting motor threshold (rMT), lower silent period threshold (SPt), and lower motor evoked potential (MEP) amplitude in boys. Better childhood-to-adolescence cumulative CRF was also associated with longer silent period (SP) duration in boys and higher MEP amplitude in girls. Cross-sectionally in adolescence, better motor fitness and better muscular strength were associated with lower left and right rMT among boys and better motor fitness was associated with higher MEP amplitude and better muscular strength with lower SPt among girls.ConclusionPhysical fitness from childhood to adolescence modifies cortical excitability and inhibition in adolescence. Motor fitness and muscular strength were associated with motor cortical excitability and inhibition. The associations were selective for specific TMS indices and findings were sex-dependent.
Reference53 articles.
1. Aerobic fitness and its relationship to sport, exercise training and habitual physical activity during youth.;Armstrong;Br. J. Sport Med.,2011
2. The role of puberty in the developing adolescent brain.;Blackmore;Hum. Brain Mapp.,2010
3. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research.;Caspersen;Public Health Rep.,1985