Quantitative susceptibility mapping using multi-channel convolutional neural networks with dipole-adaptive multi-frequency inputs

Author:

Si Wenbin,Guo Yihao,Zhang Qianqian,Zhang Jinwei,Wang Yi,Feng Yanqiu

Abstract

Quantitative susceptibility mapping (QSM) quantifies the distribution of magnetic susceptibility and shows great potential in assessing tissue contents such as iron, myelin, and calcium in numerous brain diseases. The accuracy of QSM reconstruction was challenged by an ill-posed field-to-susceptibility inversion problem, which is related to the impaired information near the zero-frequency response of the dipole kernel. Recently, deep learning methods demonstrated great capability in improving the accuracy and efficiency of QSM reconstruction. However, the construction of neural networks in most deep learning-based QSM methods did not take the intrinsic nature of the dipole kernel into account. In this study, we propose a dipole kernel-adaptive multi-channel convolutional neural network (DIAM-CNN) method for the dipole inversion problem in QSM. DIAM-CNN first divided the original tissue field into high-fidelity and low-fidelity components by thresholding the dipole kernel in the frequency domain, and it then inputs the two components as additional channels into a multichannel 3D Unet. QSM maps from the calculation of susceptibility through multiple orientation sampling (COSMOS) were used as training labels and evaluation reference. DIAM-CNN was compared with two conventional model-based methods [morphology enabled dipole inversion (MEDI) and improved sparse linear equation and least squares (iLSQR) and one deep learning method (QSMnet)]. High-frequency error norm (HFEN), peak signal-to-noise-ratio (PSNR), normalized root mean squared error (NRMSE), and the structural similarity index (SSIM) were reported for quantitative comparisons. Experiments on healthy volunteers demonstrated that the DIAM-CNN results had superior image quality to those of the MEDI, iLSQR, or QSMnet results. Experiments on data with simulated hemorrhagic lesions demonstrated that DIAM-CNN produced fewer shadow artifacts around the bleeding lesion than the compared methods. This study demonstrates that the incorporation of dipole-related knowledge into the network construction has a potential to improve deep learning-based QSM reconstruction.

Funder

National Natural Science Foundation of China

Special Project for Research and Development in Key areas of Guangdong Province

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3