Author:
Poo Elida,Mangin Jean-François,Poupon Cyril,Hernández Cecilia,Guevara Pamela
Abstract
Diffusion Magnetic Resonance Imaging tractography is a non-invasive technique that produces a collection of streamlines representing the main white matter bundle trajectories. Methods, such as fiber clustering algorithms, are important in computational neuroscience and have been the basis of several white matter analysis methods and studies. Nevertheless, these clustering methods face the challenge of the absence of ground truth of white matter fibers, making their evaluation difficult. As an alternative solution, we present an innovative brain fiber bundle simulator that uses spline curves for fiber representation. The methodology uses a tubular model for the bundle simulation based on a bundle centroid and five radii along the bundle. The algorithm was tested by simulating 28 Deep White Matter atlas bundles, leading to low inter-bundle distances and high intersection percentages between the original and simulated bundles. To prove the utility of the simulator, we created three whole-brain datasets containing different numbers of fiber bundles to assess the quality performance of QuickBundles and Fast Fiber Clustering algorithms using five clustering metrics. Our results indicate that QuickBundles tends to split less and Fast Fiber Clustering tends to merge less, which is consistent with their expected behavior. The performance of both algorithms decreases when the number of bundles is increased due to higher bundle crossings. Additionally, the two algorithms exhibit robust behavior with input data permutation. To our knowledge, this is the first whole-brain fiber bundle simulator capable of assessing fiber clustering algorithms with realistic data.
Funder
Agencia Nacional de Investigación y Desarrollo