The Potential Circular RNAs Biomarker Panel and Regulatory Networks of Parkinson’s Disease

Author:

Xiao Yousheng,Chen Hongchang,Liao Jiajia,Zhang Qinxin,He Honghu,Lei Jiang,Huang Jinjun,Ouyang Qiang,Shen Yuefei,Wang Jin

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disease. It has been reported that circular RNAs (circRNAs) play important roles in several neurological diseases. However, the role and regulatory networks of circRNAs in PD are still largely unclear. In this study, we first compared the global expression level of circRNAs from patients with PD and controls using microarray, then the candidate circRNAs were validated in another PD cohort. The possible functions of these candidate circRNAs were analyzed using Gene Ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and the regulatory networks of these candidate circRNAs were constructed through circRNA–miRNA–mRNA regulatory networks, protein–protein interaction (PPI) networks, and transcription factor-circRNA networks. The results indicated that hsa_circRNA_101275, hsa_circRNA_103730, and hsa_circRNA_038416 were significantly more highly expressed in patients with PD, while hsa_circRNA_102850 was lower expressed in patients with PD when compared with controls. A circRNA panel combining the four differentially expressed circRNA showed a high diagnostic ability to distinguish patients with PD from controls (AUC = 0.938). Furthermore, GO and KEGG analysis showed these candidate circRNAs were enriched in PI3K–Akt and MAPK signaling pathways. We established circRNA–miRNA–mRNA regulatory networks and identified 10 hub genes (ESR1, PTEN, SHC1, IGF1R, SMAD2, KRAS, MDM2, HIF1A, BMP4, and ACVR2B) were closely related to PD by using PPI network analysis. Besides, these circRNAs were predicted to be regulated through tyrosine hydroxylase (TH)-relevant transcription factors such as GATA2 and GATA3. In conclusion, our results suggest that the circRNA panel and the established circRNA–miRNA–mRNA regulation networks might provide potential novel biomarkers and therapeutic targets for PD.

Funder

National Natural Science Foundation of China

Guangxi Medical and Health Key Research Project

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3