Dual functional states of working memory realized by memristor-based neural network

Author:

Wang Hongzhe,Pan Xinqiang,Wang Junjie,Sun Mingyuan,Wu Chuangui,Yu Qi,Liu Zhen,Chen Tupei,Liu Yang

Abstract

Working memory refers to the brain's ability to store and manipulate information for a short period. It is disputably considered to rely on two mechanisms: sustained neuronal firing, and “activity-silent” working memory. To develop a highly biologically plausible neuromorphic computing system, it is anticipated to physically realize working memory that corresponds to both of these mechanisms. In this study, we propose a memristor-based neural network to realize the sustained neural firing and activity-silent working memory, which are reflected as dual functional states within memory. Memristor-based synapses and two types of artificial neurons are designed for the Winner-Takes-All learning rule. During the cognitive task, state transformation between the “focused” state and the “unfocused” state of working memory is demonstrated. This work paves the way for further emulating the complex working memory functions with distinct neural activities in our brains.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3