Case Report: A case of PLA2G6 gene-related early-onset Parkinson's disease and review of literature

Author:

Gao Lili,Shi Chunlan,Lin Qing,Wu Yujing,Hu Liqi,Wang Mingwang,Guan Jianhua,Lin Sheng,Liao Yuansheng,Wu Chenghan

Abstract

BackgroundEarly onset Parkinson's disease (EOPD) is a neurodegenerative disease associated with the action ofto genetic factors. A mutated phospholipase A2 type VI gene (PLA2G6) is considered to be one of pathogenic genes involved in EOPD development. Although EOPD caused by a mutated PLA2G6 has been recorded in major databases, not all mutant genotypes have been reported. Here, we report a case of PLA2G6-related EOPD caused by a novel compound heterozygous mutation.Case presentationThe case was an of 26-year-old young male with a 2-year course of disease. The onset of the disease was insidious and developed gradually. The patient presented with unsteady walking, bradykinesia, unresponsiveness, and decreased facial expression. Auxiliary examination showed a compound heterozygous mutation of the PLA2G6gene with c.991G > T and c.1427 + 1G > A. Mild atrophy of the cerebrum and cerebellum was detected on brain MRI. The patient was diagnosed with EOPD. We administered treatment with Madopar, which was effective. After a two-year disease course, we observed progression to stage 5 according to the Hoehn-Yahr Scale (without medicine in the off-stage). An MDS-UPDRS III score of 62 was obtained, with characteristics of severe disease and rapid progress. The diagnosis was an EOPD phenotype caused by a combination of mutations at the c.991G > T and c.1427 + 1G > A sites of the PLA2G6gene.ConclusionAfter active treatment, the disease was set under control, with no significant progression during the three-month follow-up period. Dyskinesia did not recur after reducing the Madopar dose. The freezing sign was slightly decreased and the wearing-off was delayed to 2 h.

Funder

Fujian Provincial Health Commission

Natural Science Foundation of Fujian Province

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3