MSATNet: multi-scale adaptive transformer network for motor imagery classification

Author:

Hu Lingyan,Hong Weijie,Liu Lingyu

Abstract

Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are performed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75 and 89.34% accuracies for the within-subject experiments and 81.33 and 86.23% accuracies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference33 articles.

1. Filter Bank common spatial pattern (FBCSP) in brain-computer Interface;Ang,2008

2. Wearable brain–computer Interface instrumentation for robot-based rehabilitation by augmented reality;Arpaia;IEEE Trans. Instrum. Meas.,2020

3. Optimizing the channel selection and classification accuracy in EEG-based BCI;Arvaneh;IEEE Trans. Biomed. Eng.,2011

4. Multiattention adaptation network for motor imagery recognition;Chen;IEEE Trans. Syst. Man Cybern. Syst.,2022

5. An EEG-based brain-computer interface for automatic sleep stage classification;Chen,2018

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3