Human nasal olfactory stem cells, purified as advanced therapy medicinal products, improve neuronal differentiation

Author:

Jaloux Charlotte,Bonnet Maxime,Vogtensperger Marie,Witters Marie,Veran Julie,Giraudo Laurent,Sabatier Florence,Michel Justin,Legré Regis,Guiraudie-Capraz Gaëlle,Féron François

Abstract

BackgroundOlfactory ecto-mesenchymal stem cells (OE-MSC) are mesenchymal stem cells derived from the lamina propria of the nasal mucosa. They display neurogenic and immunomodulatory properties and were shown to induce recovery in animal models of spinal cord trauma, hearing loss, Parkinsons’s disease, amnesia, and peripheral nerve injury. As a step toward clinical practice, we sought to (i) devise a culture protocol that meets the requirements set by human health agencies and (ii) assess the efficacy of stem cells on neuron differentiation.MethodsNasal olfactory mucosa biopsies from three donors were used to design and validate the good manufacturing process for purifying stem cells. All processes and procedures were performed by expert staff from the cell therapy laboratory of the public hospital of Marseille (AP-HM), according to aseptic handling manipulations. Premises, materials and air were kept clean at all times to avoid cross-contamination, accidents, or even fatalities. Purified stem cells were cultivated for 24 or 48 h and conditioned media were collected before being added to the culture medium of the neuroblastoma cell line Neuro2a.ResultsCompared to the explant culture-based protocol, enzymatic digestion provides higher cell numbers more rapidly and is less prone to contamination. The use of platelet lysate in place of fetal calf serum is effective in promoting higher cell proliferation (the percentage of CFU-F progenitors is 15.5%), with the optimal percentage of platelet lysate being 10%. Cultured OE-MSCs do not show chromosomal rearrangement and, as expected, express the usual phenotypic markers of mesenchymal stem cells. When incorporated in standard culture medium, the conditioned medium of purified OE-MSCs promotes cell differentiation of Neuro2a neuroblastoma cells.ConclusionWe developed a safer and more efficient manufacturing process for clinical grade olfactory stem cells. With this protocol, human OE-MSCs will soon be used in a Phase I clinical based on their autologous transplantation in digital nerves with a neglected injury. However, further studies are required to unveil the underlying mechanisms of action.

Funder

Fondation de l'Avenir pour la Recherche Médicale Appliquée

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3