Perinatal development of central vestibular neurons in mice

Author:

Dubois Christophe J.,Cardoit Laura,Simmers John,Lambert François M.,Thoby-Brisson Muriel

Abstract

Central circuitry of the vestibular nuclei integrates sensory inputs in the adaptive control of motor behaviors such as posture, locomotion, and gaze stabilization. Thus far, such circuits have been mostly examined at mature stages, whereas their emergence and early development have remained poorly described. Here, we focused on the perinatal period of murine development, from embryonic day E14.5 to post-natal day P5, to investigate the ontogeny of two functionally distinct vestibular neuronal groups, neurons projecting to the spinal cord via the lateral vestibulospinal tract (LVST) and commissural neurons of the medial vestibular nucleus that cross the midline to the contralateral nucleus. Using transgenic mice and retrograde labeling, we found that network-constitutive GABAergic and glycinergic neurons are already established in the two vestibular groups at embryonic stages. Although incapable of repetitive firing at E14.5, neurons of both groups can generate spike trains from E15.5 onward and diverge into previously established A or B subtypes according to the absence (A) or presence (B) of a two-stage spike after hyperpolarization. Investigation of several voltage-dependent membrane properties indicated that solely LVST neurons undergo significant maturational changes in their electrophysiological characteristics during perinatal development. The proportions of A vs B subtypes also evolve in both groups, with type A neurons remaining predominant at all stages, and type B commissural neurons appearing only post-natally. Together, our results indicate that vestibular neurons acquire their distinct morpho-functional identities after E14.5 and that the early maturation of membrane properties does not emerge uniformly in the different functional subpopulations of vestibulo-motor pathways.

Funder

Fondation pour la Recherche Médicale

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3