A lightweight network architecture for traffic sign recognition based on enhanced LeNet-5 network

Author:

An Yuan,Yang Chunyu,Zhang Shuo

Abstract

As an important part of the unmanned driving system, the detection and recognition of traffic sign need to have the characteristics of excellent recognition accuracy, fast execution speed and easy deployment. Researchers have applied the techniques of machine learning, deep learning and image processing to traffic sign recognition successfully. Considering the hardware conditions of the terminal equipment in the unmanned driving system, in this research work, the goal was to achieve a convolutional neural network (CNN) architecture that is lightweight and easily implemented for an embedded application and with excellent recognition accuracy and execution speed. As a classical CNN architecture, LeNet-5 network model was chosen to be improved, including image preprocessing, improving spatial pool convolutional neural network, optimizing neurons, optimizing activation function, etc. The test experiment of the improved network architecture was carried out on German Traffic Sign Recognition Benchmark (GTSRB) database. The experimental results show that the improved network architecture can obtain higher recognition accuracy in a short interference time, and the algorithm loss is significantly reduced with the progress of training. At the same time, compared with other lightweight network models, this network architecture gives a good recognition result, with a recognition accuracy of 97.53%. The network structure is simple, the algorithm complexity is low, and it is suitable for all kinds of terminal equipment, which can have a wider application in unmanned driving system.

Publisher

Frontiers Media SA

Reference47 articles.

1. Traffic sign recognition and classification using convolutional neural networks.;Akshata;J. Emerg. Technol. Innov. Res.,2019

2. Using grayscale images for object recognition with convolutional-recursive neural network;Bui;Proceedings of the 2016 IEEE 6th international conference on communications and electronics (ICCE),2016

3. A lightweight end-side user experience data collection system for quality evaluation of multimedia communication.;Chen;IEEE Access.,2018

4. Pedestrian detection with LeNet-like convolutional networks.;Cuesta-Infante;Neural Comput. Appl.,2020

5. Histogram equalization variants as optimization problems: A review.;Dhal;Arch. Comput. Methods Eng.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3