Development and Testing of SPIDER-NET: An Interactive Tool for Brain Connectogram Visualization, Sub-Network Exploration and Graph Metrics Quantification

Author:

Coluzzi Davide,Pirastru Alice,Pelizzari Laura,Cabinio Monia,Laganà Maria Marcella,Baselli Giuseppe,Baglio Francesca

Abstract

Brain connectomics consists in the modeling of human brain as networks, mathematically represented as numerical connectivity matrices. However, this representation may result in difficult interpretation of the data. To overcome this limitation, graphical representation by connectograms is currently used via open-source tools, which, however, lack user-friendly interfaces and options to explore specific sub-networks. In this context, we developed SPIDER-NET (Software Package Ideal for Deriving Enhanced Representations of brain NETworks), an easy-to-use, flexible, and interactive tool for connectograms generation and sub-network exploration. This study aims to present SPIDER-NET and to test its potential impact on pilot cases. As a working example, structural connectivity (SC) was investigated with SPIDER-NET in a group of 17 healthy controls (HCs) and in two subjects with stroke injury (Case 1 and Case 2, both with a focal lesion affecting part of the right frontal lobe, insular cortex and subcortical structures). 165 parcels were determined from individual structural magnetic resonance imaging data by using the Destrieux atlas, and defined as nodes. SC matrices were derived with Diffusion Tensor Imaging tractography. SC matrices of HCs were averaged to obtain a single group matrix. SC matrices were then used as input for SPIDER-NET. First, SPIDER-NET was used to derive the connectogram of the right hemisphere of Case 1 and Case 2. Then, a sub-network of interest (i.e., including gray matter regions affected by the stroke lesions) was interactively selected and the associated connectograms were derived for Case 1, Case 2 and HCs. Finally, graph-based metrics were derived for whole-brain SC matrices of Case 1, Case 2 and HCs. The software resulted effective in representing the expected (dis) connectivity pattern in the hemisphere affected by the stroke lesion in Cases 1 and 2. Furthermore, SPIDER-NET allowed to test ana priorihypothesis by interactively extracting a sub-network of interest: Case 1 showed a sub-network connectivity pattern different from Case 2, reflecting the different clinical severity. Global and local graph-based metrics derived with SPIDER-NET were different between cases with stroke injury and HCs. The tool proved to be accessible, intuitive, and interactive in brain connectivity investigation and provided both qualitative and quantitative evidence.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3