Delayed cortical development in mice with a neural specific deletion of β1 integrin

Author:

Rashid Mamunur,Olson Eric C.

Abstract

The adhesion systems employed by migrating cortical neurons are not well understood. Genetic deletion studies of focal adhesion kinase (FAK) and paxillin in mice suggested that these classical focal adhesion molecules control the morphology and speed of cortical neuron migration, but whether β1 integrins also regulate migration morphology and speed is not known. We hypothesized that a β1 integrin adhesion complex is required for proper neuronal migration and for proper cortical development. To test this, we have specifically deleted β1 integrin from postmitotic migrating and differentiating neurons by crossing conditional β1 integrin floxed mice into the NEX-Cre transgenic line. Similar to our prior findings with conditional paxillin deficiency, we found that both homozygous and heterozygous deletion of β1 integrin causes transient mispositioning of cortical neurons in the developing cortex when analyzed pre- and perinatally. Paxillin and β1 integrin colocalize in the migrating neurons and deletion of paxillin in the migrating neuron causes an overall reduction of the β1 integrin immunofluorescence signal and reduction in the number of activated β1 integrin puncta in the migrating neurons. These findings suggest that these molecules may form a functional complex in migrating neurons. Similarly, there was an overall reduced number of paxillin+ puncta in the β1 integrin deficient neurons, despite the normal distribution of FAK and Cx26, a connexin required for cortical migration. The double knockout of paxillin and β1 integrin produces a cortical malpositioning phenotype similar to the paxillin or β1 integrin single knockouts, as would be expected if paxillin and β1 integrin function on a common pathway. Importantly, an isolation-induced pup vocalization test showed that β1 integrin mutants produced a significantly smaller number of calls compared to their littermate controls when analyzed at postnatal day 4 (P4) and revealed a several days trend in reduced vocalization development compared to controls. The current study establishes a role for β1 integrin in cortical development and suggests that β1 integrin deficiency leads to migration and neurodevelopmental delays.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3