ARA-net: an attention-aware retinal atrophy segmentation network coping with fundus images

Author:

Chen Lei,Zhou Yuying,Gao Songyang,Li Manyu,Tan Hai,Wan Zhijiang

Abstract

BackgroundAccurately detecting and segmenting areas of retinal atrophy are paramount for early medical intervention in pathological myopia (PM). However, segmenting retinal atrophic areas based on a two-dimensional (2D) fundus image poses several challenges, such as blurred boundaries, irregular shapes, and size variation. To overcome these challenges, we have proposed an attention-aware retinal atrophy segmentation network (ARA-Net) to segment retinal atrophy areas from the 2D fundus image.MethodsIn particular, the ARA-Net adopts a similar strategy as UNet to perform the area segmentation. Skip self-attention connection (SSA) block, comprising a shortcut and a parallel polarized self-attention (PPSA) block, has been proposed to deal with the challenges of blurred boundaries and irregular shapes of the retinal atrophic region. Further, we have proposed a multi-scale feature flow (MSFF) to challenge the size variation. We have added the flow between the SSA connection blocks, allowing for capturing considerable semantic information to detect retinal atrophy in various area sizes.ResultsThe proposed method has been validated on the Pathological Myopia (PALM) dataset. Experimental results demonstrate that our method yields a high dice coefficient (DICE) of 84.26%, Jaccard index (JAC) of 72.80%, and F1-score of 84.57%, which outperforms other methods significantly.ConclusionOur results have demonstrated that ARA-Net is an effective and efficient approach for retinal atrophic area segmentation in PM.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference33 articles.

1. A novel focal tversky loss function with improved attention u-net for lesion segmentation;Abraham;2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy,2018

2. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation;Alom;arXiv Comput. Vision Pattern Recogn.,2018

3. A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images;Chai;Appl. Soft Comput.,2020

4. Active contours without edges;Chan;IEEE Trans. Image Process.,2001

5. Microstructure of peripapillary atrophy: beta zone and gamma zone;Dai;Invest. Ophthalmol. Vis. Sci.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3